Enhanced Terrestrial and Freshwater Ecological Observation Infrastructure

Bob Scholes Fynbos Forum, Montagu 4 August 2015

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

What research infrastructure do South African ecologists need to remain at the forefront of their field?

What is it?

What can it do?

- Measure exchange of CO₂, H₂O, nutrients and energy between atmosphere and land, and between land and water, 24 hours a day, 365 days/y in order to
 - Understand the controls on key ecosystem processes
 - Gain a predictive understanding of global climate change
- Record changes in structure, composition, function, disturbance and use of ecosystems, especially over long periods and landscape scales
- It is a *research infrastructure* rather than a monitoring network, but can contribute to measurements required by national and international law, calibration and validation of remote sensing, testing of models

Similar infrastructure around the world most have started up in the past 5 years

Comparative advantages

To remain at the cutting edge of ecological research, South African scientists need access to infrastructure comparable to those elsewhere. But we can't compete on expense, so we must compete on innovation:

- Include an experimental component, eg long-term fire trials, experimental catchments
- Integrate land, water and people
- Focus on understudied but important ecosystems

We may join an international consortium as a strategy

Strategic Importance

- 7% of SA economy rests on natural resources, and almost the whole economy depends on water
- Mega-biodiversity and research history make South Africa leaders in ecological research

Key destination for international researchers

 Global and regional change (climate, land use, population, economy) occurs at decadal timescales and multiple-km space scales. To understand them we must study the processes at commensurate scales.

Local and Global Impact

- Advance South African ecosystem science into the 'big data' era: large scales, complex issues
 - Expose next generation to methods and concepts
- Provide local and national policymakers with guidance, early-warning and predictions relating to natural resources and environment
- Bring tropical and arid ecosystems to the same state of knowledge as temperate ecosystems

Maturity

- Ecosystem-scale science originated~ 1960s
- Recent innovations in instrumentation and computation are opening up exiting new areas
- There is growing consensus worldwide on what needs to be measured and how, and the instrument suppliers are well-established

Potential for success

• The instrumentation is challenging, but within South African capability

- Have operated similar systems for a decade

- National policy mandates greater sharing and integration of data collected with public funds
 - The interoperability issues are soluble
 - The inter-agency issues are the key challenge
- The under-studied nature of African ecosystems makes the region a destination of choice for researchers and donors

Policy and Policymakers

- Global change atmosphere, climate and land use – is a key challenge of our time
 - Need to develop a predictive understanding relevant to our unique environment
 - Informs international, national, provincial and local policies
- Natural resources water, land, grazing, fuel, biodiversity, air quality...
 - What are the limits to sustainable use?

Scope and range of science

Broadly, Environmental Sciences and Global Change

Innovation and technology transfer

First time in Africa Solutions for a Green Economy Power and efficiency from integrative synergies

Governance and management

Finances

		Network of		
	Per node	nodes	HQ	Total
Capital Expediture (once in 10 years)				
Sensors, loggers and site-based equipment	2596528	15579170	5193057	20772226
Data and communication infrastructure	15000	90000	130000	220000
Supporting infrastructure: buildings, roads	100000	600000		600000
Vehicles	400000	2400000	400000	2800000
				24392226
Operating Expenses (per year)				
Consumables	10000	60000	20000	80000
Transport and travel	160000	960000	100000	1060000
Stakeholder outreach meetings	30000	180000	100000	280000
Governance meetings	25000	150000	150000	300000
Maintenance	261153	1566917	20000	1586917
Upgrades	52231	313383	20000	333383
Data purchases: imagery and in situ	42000	252000	500000	752000
Broadband	7200	43200	24000	67200
Office rental	120000	720000	480000	1200000
Insurance	155576	933458	6500	939958
				6599459
Facility-related Human Resources (per year)				
Managers	700000	4200000	1900000	6100000
Facility scientists/professionals	500000	3000000	1300000	4300000
Administrative	250000	1500000	500000	2000000
Technicians	1500000	9000000	2100000	11100000
				23500000
Annual operating total				30099459
Total for 10 year operation, CAPEX plus operating				421127021

NEON, ICOS R9.3-10.9 million/site/y This proposal R7 mill/site/y

Summary

3 Compelling reasons to do this

- reduced uncertainty about the consequences of a world changing both as a result of global atmospheric and climate changes, and local land- and water-use changes;
- leverage South African comparative advantage based on ecological diversity to enhance and transform its world-class ecological research status;
- impetus to **integrate** and revolutionize existing currently underperforming and fragmented investments in environmental observation and prediction.

Department: Science and Technology REPUBLIC OF SOUTH AFRICA

Bob.Scholes@wits.ac.za

ESIAS BOLCH